
Components of a Scalable Web

Hosting Platform using a Cloud and

Peer-to-Peer Hybrid Architecture

by

Alexander Pokluda

CS854 Cloud Computing and Management

Research and Implementation Project

University of Waterloo

Waterloo, Ontario, Canada

April 2013

Abstract

This report summarizes the work done for the author’s CS854 Cloud Computing and

Management Research and Implementation Project. This work is also being contributed to

the pWeb project, which is an effort to create a hybrid peer-to-peer and cloud-based plat-

form for developing next-generation scalable web applications. The first chapter provides

an in-depth overview of the pWeb project and describes the architecture and operation of

the system with a focus on the device naming infrastructure that assigns permanent names

to fixed and mobile devices. The second chapter gives a brief overview of the operation of

the domain name system and an in-depth discussion of the architecture, design and im-

plementation of the pWeb DNS Gateway–a new component of the pWeb system that has

been implemented for this project. The DNS Gateway enables the pWeb device naming

infrastructure to be integrated with the domain name system infrastructure. This allows

pWeb and traditional web applications to resolve a device’s permanent name to its cur-

rent network address using the domain name system as an interface to the pWeb naming

system. This chapter concludes with a summary of the performance of the DNS Gateway

software as measured using ResPerf, a DNS performance measurement tool, which shows

that the DNS Gateway software can easily handle at least 7,000 queries per second. The

third chapter describes the Device Indexer system that is also being designed and imple-

mented for the pWeb project. This system creates a searchable database of information

about devices in the pWeb system.

ii

Table of Contents

List of Figures . v

List of Listings . vi

1 Introduction 1

1.1 pWeb System Architecture . 2

1.1.1 Core Architecture . 2

1.1.2 Device Naming Services Overview 3

1.1.3 DNS Gateway . 5

1.1.4 Device Indexer . 6

1.2 Related Work . 7

1.3 Proposed Milestones . 8

1.3.1 Basic Milestones . 8

1.3.2 Additional Milestones . 8

1.3.3 Extra Milestones . 9

2 DNS Gateway 10

2.1 Domain Name System (DNS) Overview . 11

2.1.1 DNS Address Resolution Mechanism 11

2.2 pWeb Device Naming Integration with Existing DNS Infrastructure 14

2.3 Scalability . 18

iii

2.4 Design and Implementation . 19

2.4.1 DNS Gateway to Home Agent Protocol 20

2.4.2 Configuration . 21

2.4.3 Logging . 23

2.4.4 Instrumentation . 23

2.4.5 Known Issues . 24

2.5 Installing the DNS Gateway from Source 25

2.5.1 Dependencies . 25

2.5.2 Building . 25

2.6 Installation as a System Service . 26

2.7 Test Tools . 26

2.8 Performance Evaluation . 27

2.9 Summary . 28

3 Device Indexer Overview 29

4 Conclusion 31

Appendices 32

A DNS Gateway to Home Agent Protocol 33

B Proposed DNS Gateway to Home Agent Protocol 38

C Report Produced by ResPerf 42

References . 45

iv

List of Figures

1.1 pWeb system architecture . 2

1.2 Integration of pWeb device naming with domain name system infrastructure 6

2.1 A subset of the domain namespace showing administrative zones 12

2.2 How a recursive DNS resolver would resolve the domain name www.pwebproject.

net . 13

2.3 Procedure used by the DNS Gateway and Home Agents to resolve a device

name to IP address . 17

3.1 The pWeb Device Indexer architecture . 30

v

www.pwebproject.net
www.pwebproject.net

List of Listings

1.1 Example Home Agent record inserted into Plexus DHT 4

2.1 Nameserver records for pwebproject.net nameservers 15

2.2 DNS Gateway configuration options . 21

2.3 Commands to build and install the DNS Gateway on Unix-like platforms . 26

2.4 Upstart script to run the DNS Gateway as a system service on Ubuntu . . 26

vi

pwebproject.net

Chapter 1

Introduction

The pWeb project is a well established project aimed at creating a hybrid peer-to-peer and

cloud-based platform for developing scalable web applications. Contemporary client-server

web hosting applications deployed exclusively in the cloud face a number of challenges such

as scalability, single point of failure, administrative overhead, and cost associated with

maintaining a dedicated hosting infrastructure [2]. pWeb seeks to address these challenges

by leveraging the strengths of both cloud and peer-to-peer infrastructures.

The current pWeb system architecture consists of five main software components. The

core pWeb system is a three tier hierarchical architecture with instances of a unique soft-

ware component deployed in each layer. These three tiers perform the core functions of

device naming and content indexing and provide and consume content and services. Two

additional components, the DNS Gateway and Device Indexer, operate outside the core

pWeb infrastructure but nevertheless enhance the system with valuable functionality.

The work done for this project focused on contributing to a working implementation

of the pWeb system that can be demonstrated at the sponsor’s facility in coordination

with other project members. We have successfully implemented a demonstrable system

based on the three tier architecture using a top-down approach. The system currently

implements the fundamental features and additional features will be added incrementally

in subsequent iterations.

The pWeb system architecture including the DNS Gateway and Device Indexer are

discussed next in Section 1.1, followed by a discussion of related work in Section 1.2. The

1

Figure 1.1: pWeb system architecture

status of the milestones that were presented in the proposal for this project are discussed

in Section 1.3.

1.1 pWeb System Architecture

1.1.1 Core Architecture

The core of the pWeb system is a three tier architecture as shown in Figure 1.1. Nodes in

Tier III perform distributed name resolution and indexing of devices in the pWeb network

while devices in Tier I and Tier II both provide and consume application level content and

services.

Nodes in Tier III are also known as pWeb Home Agents because they perform a role

similar to that of the home agent in Mobile IP, an Internet Engineering Task Force standard

communications protocol that is designed to allow mobile device users to move from one

2

network to another while maintaining a permanent IP address [16, 17]; however, rather

than provide devices with a permanent network address, pWeb Home Agents provide users

with permanent device names that can be used to access services from the device regardless

of the device’s physical location and network address, similar to dynamic updates in the

domain name system [21].

The infrastructure for Tier III consists of stable nodes at well known network locations.

It is expected that organizations, institutions and individuals will contribute heterogeneous

cloud resources to this tier by hosting instances of the pWeb Home Agent software in order

to enable members of the organization or public at large to participate in the pWeb network.

This is the same principle that is used by other similar and successful services such as the

Jabber Instant Messenger service [10] and other services based on XMPP [8].

In addition to providing device name registration and network address resolution to

devices in the pWeb network, the Home Agents make certain information available via an

HTTP interface to enable the development of external applications. The Device Indexer,

discussed shortly, makes use this feature.

Content and services in pWeb are provided by nodes in Tier I and Tier II that also par-

ticipate in a peer-to-peer network. In general, these nodes are assumed to have shorter but

regular uptimes and less bandwidth. Nodes in this tier may be servers, desktop computers,

laptops or even mobile devices. A user publishes content using the client software running

on one of these nodes. The client software will push the content meta-data, such as content

name and location, to the cloud hosted indexing infrastructure in Tier III. The content

itself will remain on the user’s machine and be made publicly accessible over HTTP.

To ensure that content remains accessible despite peer churn and the limited resources

of individual peers, the nodes in Tier II will be organized into replication groups. Each

member of a replication group will mirror the content of the original publisher and make

it publicly available as well. Nodes in Tier I are primarily publishers and consumers of

content and use the public services offered by Tier I and Tier II to publish and access it.

1.1.2 Device Naming Services Overview

The Home Agent software is based on Plexus [3]. Plexus is a peer-to-peer search protocol

and distributed hash table (DHT) that provides an efficient mechanism for advertising a

bit sequence and discovering it using any subset of its 1-bits. When a new pWeb Home

3

Name uw

Address 129.97.170.102

Address 129.97.172.102

Listing 1.1: Example Home Agent record inserted into Plexus DHT

Agent is brought online and joins the Tier III overlay network, it inserts its own name

and network addresses into the distributed hash table. For example, a Home Agent hosted

by the University of Waterloo would insert a record that is conceptually equivalent to the

record shown in Listing 1.1. The Name field is a label, similar to a hostname, that uniquely

identifies the Home Agent in the pWeb network. A label consists of a single word that

may contain only the ASCII letters ‘a’ through ‘z’ in a case insensitive manner, the digits

‘0’ through ‘9’ and the hyphen ‘-’.

pWeb device names consist of three labels separated by periods, such as mobile.alice.uw.

The leftmost label is assigned to a device and chosen by the device’s owner. The middle

label is the is chosen by and identifies the user, and the rightmost label identifies the home

agent as mentioned above.

Registered device names and IP addresses are stored locally at the Home Agent where

the device name was registered. This reduces the amount of data that must be stored in

the DHT and makes device name registration and update operations much faster.

Home Agents also have the responsibility of resolving device names to network ad-

dresses, such as an Internet Protocol (IP) address, for their users. When a Home Agent

receives a request to resolve a device name to network address, such as desktop.bob.ut,

that is not registered locally, it extracts the Home Agent label from the device name, ut

in this case, and looks up the network address for the remote Home Agent in the DHT.

The local Home Agent then contacts the remote Home Agent and asks for the device’s

current network address, which it returns to the requester. Both the remote Home Agent’s

network address and the remote device’s address will be cached at the local Home Agent

for an appropriate period of time in order to serve future requests more quickly and reduce

the load on the network.

This architecture for device name resolution and was chosen to support the explosive

growth in smartphone services subscribers that is expected over the next few years. Recent

forecasts by Credit Suisse, one of the world’s largest and most profitable banks, predict

4

that the number of global smartphone subscribers will reach 1.7 billion by the end of 2013

and nearly four billion by the end of 2017 [20]. A full analysis of the scalability of the

device naming and Home Agent architecture is out of scope for this report, however.

1.1.3 DNS Gateway

Group formation and content replication in Tier II are not included in the fundamental

feature set implemented in the current implementation of the pWeb system. Instead,

devices in Tier I and Tier II are assumed to be always online and have sufficient bandwidth

to serve the published content. Tier III will allow users to resister and resolve device names

in order to share and access content. Users will be able to register names for Tier I and Tier

II devices and update their network addresses using a name updater application that will

function similar to a Dynamic DNS client [21] and will serve content using a standalone

HTTP server. Tier III devices will use a standard, unmodified web browser to access

content on the pWeb network. Names will be resolved by the web browser using a DNS

compatible interface provided by a DNS Gateway that acts as an intermediary between

the traditional domain name system (DNS) infrastructure and the Home Agents in Tier

III of the pWeb architecture. This architecture is depicted in Figure 1.2.

Here content served by the device named nexus.alice.uw can be accessed by an un-

modified web browser using the domain name nexus.alice.uw.dyngw.org, or the domain

name nexus.alice.uw.dht if the local network has been configured to support the .dht

pseudo top level domain that will be explained in Chapter 2. In the future, applications

developed specifically for use with pWeb will have the ability to resolve device names to

network addresses by contacting the device’s Home Agent directly, bypassing the domain

name system infrastructure; however, it is expected that the DNS Gateway will remain

a critical piece of the pWeb infrastructure because the DNS Gateway enables seamless

integration between pWeb and traditionally hosted web content. The DNS Gateway also

enables pWeb content to be linked to by traditional hosted websites and web search engines

to index content on pWeb, providing a unified browsing experience for the end user.

5

Figure 1.2: Integration of pWeb device naming with domain name system infrastructure

1.1.4 Device Indexer

The as previously mentioned, Home Agents in Tier III will make certain information avail-

able publicly over HTTP using a representational state transfer (REST) architecture [23].

Currently all registered device names and services offered by each device1and the Home

Agent’s neighbours in the Plexus peer-to-peer network are published using this interface.

This information is made available to enable the development of internal and external

applications that contribute to the functionality of the pWeb system.

The first application to take advantage of this interface is a Device Indexer that is being

developed as part of the pWeb project. The Device Indexer itself consists of three main

components: crawler and manager processes, a searchable database, and a web service

frond-end. Multiple crawler processes, coordinated by a manager periodically poll each

Home Agent’s REST interface to discover all device names registered in the pWeb network.

1We plan to add extensive security and privacy controls to the Home Agent software that will enable

users to strictly control the information that is made publicly available; however, the current version of

the of the software makes all device names and last update times available publicly.

6

The device names are inserted into a searchable database that is made accessible to users

through a web interface and other applications through its own REST interface. The

Device Indexer and searchable database are represented by the Central Search in the top

right corner of Figure 1.1.

1.2 Related Work

Other systems exist or have been proposed that share some similarities with pWeb; how-

ever, most of these systems are hybrid systems where a peer-to-peer network of caches is

used to reduce the load on a traditional, centralized web serverthe most notable is Coral-

CDN [9]. An exception is Freenet [5],which provides a web hosting platform based on a

distributed peer-to-peer data store. Frennet and pWeb have similar goals; however, they

are based on fundamentally different architectures. Freenet used a flat peer-to-peer ar-

chitecture that prioritizes anonymity and censorship resistance, and as a result, content

can be slow to access and dynamic pages are not supported. pWeb uses a unique three

tier structured architecture that combines cloud and peer-to-peer resources. pWeb aims to

democratize web hosting by providing individual publishers with the virtually limitless re-

sources of a large peer-to-peer network with the stability and reliability of the cloud. pWeb

will focus on providing support for dynamic content and an improved user experience with

configurable security and privacy settings.

The implementation of the pWeb software is based on several previous publications

that discuss various aspects of the system, including a high-level overview of the pWeb

system [2] and a paper describing in detail the Plexus peer-to-peer protocol and distributed

hash table [3] that constitutes a core component of the Home Agent software in Tier III.

Extensive work has been done to define the pWeb system and much of this work is available

in progress reports submitted to Orange Labs, one of the project sponsors. The most

relevant report is [1] that describes the architecture, design and implementation of the

pWeb system.

7

1.3 Proposed Milestones

Three categories of milestones were given in the proposal for the work to be done for

the author’s CS854 Cloud Computing and Management Research and Implementation

project. The basic milestones included a minimal set of tasks that the author expected

to accomplish in order to contribute to to making the working pWeb system described

above. The additional milestones were tasks that the author hoped to accomplish provided

that no significant difficulties were encountered while meeting the basic milestones. The

extra milestones were tasks that the author would work on if the tasks for the basic and

additional milestones were easier to complete than expected. The status of each of these

three categories of milestones are discussed below.

1.3.1 Basic Milestones

The basic milestones were to design and implement the domain name system interface

to the device naming services provided by Tier III in order to enable unmodified Tier I

devices to access content on the pWeb network. The primary task associated with this was

programming a name server that receives DNS requests, queries nodes in Tier III for the

device’s current network address and returns that address using a DNS reply. Additionally,

an analysis of the scalability and performance of the DNS interface was to be performed.

All of these milestones have been successfully met. The DNS Gateway, which implements

the domain name system interface, is discussed in Chapter 2. The DNS Gateway software

is distributed with this report.

1.3.2 Additional Milestones

The additional milestones were to design and implement a “name crawler.” The purpose of

the “name crawler” was to discover all registered device names and the services offered by

those devices, and create a web accessible directory of them. Creating and maintaining a

robust, functional and scalable database proved to be a challenge; nevertheless, the device

indexing system has been designed and the implementation is nearing completion. The

design and implementation are discussed very briefly in Chapter 3, Device Indexer.

8

1.3.3 Extra Milestones

The extra milestones were to assist with the development of a pWeb software application

for Tier I and Tier II devices. This application integrates the name updater, a web server

for publishing content, and a peer-to-peer communication component for establishing peer-

to-peer connections with other devices in Tier I and Tier II. Throughout the duration of

this project, the author assisted with a number of different tasks, including designing the

software; researching and evaluating different embeddable web servers for desktop and

mobile platforms; researching network address translation (NAT) traversal techniques and

evaluating software libraries and servers that implement the techniques.

9

Chapter 2

DNS Gateway

As mentioned in the introduction, the pWeb DNS Gateway in an important piece of the

pWeb infrastructure. It provides a seamless integration of pWeb and traditionally hosted

web content and is the primary method of resolving a device’s permanent name to its

current network address in the current implementation of pWeb.

The pWeb device naming system has been designed to support billions of devices.

Naturally, when using the domain name system as an interface to the pWeb network, we

must consider the scalability of this interface. There are two aspects that must be taken into

consideration: the load that is placed on the existing domain name system infrastructure

before queries reach the DNS Gateway, and the scalability of the DNS Gateway itself.

The domain name system infrastructure was not designed for host mobility, but previous

studies have shown that the domain name system can be used as a location repository

for mobile devices without placing undue stress on the global root nameservers [24, 25].

Thus, using the domain name system as an interface to the pWeb naming system should

not place appreciable load on the root servers. The analysis of the scalability of the

DNS Gateway itself is presented in Section 2.3, but first an overview of the domain name

system is presented in Section 2.1 and a detailed description of pWeb device naming with

the existing DNS infrastructure is given in Section 2.2

10

2.1 Domain Name System (DNS) Overview

The domain name system is a hierarchical distributed database that provides a naming

system for computers and resources connected to the Internet. The domain name system

associates human readable names with various record types. The predominant use of the

domain name system–at least for human users– is to translate mnemonic names to resource

Internet Protocol (IP) addresses. A domain name that is associated with at least one IP

address is commonly referred to as a hostname.

The domain name system distributes the responsibility of assigning domain names and

mapping domain names to network addresses to authoritative nameservers in each domain.

The authoritative servers may in turn delegate responsibility for subdomains to other

authoritative nameservers. The domain name system specifies the technical functionality

of the database as well as the data structures and protocols for communication between

domain nameservers and clients, and the algorithms that a nameserver will use to respond

to queries against its database.

The domain namespace takes the form of a tree structure. Each node in the tree has

zero or more resource records associated with it that associate specific information with the

domain name. The tree structure subdivide domains into administrative zones, starting at

the root zone. Each zone contains at least one domain and zero or more subdomains.

Domain names consist of a series of labels containing ASCII letters, digits and hyphen

characters each terminated with periods, also known as dots. The last dot is frequently

omitted. The exact rules for forming domain names are defined in [15, 4, 6]. An example of

a domain name is www.pwebproject.net. The rightmost label, net, is known as the Top

Level Domain (TLD). The domain pwebproject is a subdomain of net and www is a sub-

domain of pwebproject. A subset of the domain namespace that shows the administrative

zones for the domain name www.pwebproject.net is shown in Figure 2.1.

2.1.1 DNS Address Resolution Mechanism

The operating system on and end host such as a laptop or desktop personal computer

or Internet server typically contains a stub resolver that resolves hostnames to network

addresses on behalf of applications on the machine. The stub resolver offloads most of the

work of resolving a name to a recursive DNS resolver (also know as a nameserver) that is

11

www.pwebproject.net
net
pwebproject
net
www
pwebproject
www.pwebproject.net

Figure 2.1: A subset of the domain namespace showing administrative zones

hosted in the local network or in the Internet Service Provider’s network. The recursive

DNS resolver uses the following algorithm to resolve a domain name, which is depicted in

Figure 2.2. Note that the recursive DNS resolver performs a recursive operation from the

client’s perspective but actually queries other nameservers in an iterative manner.

1. When the recursive DNS resolver receives a query asking for the IP address cor-

responding to a domain name such as www.pwebproject.net it will look in its

cache for the address of one of the root nameservers and forward the the query for

www.pwebproject.net to the root nameserver. The cache is initially populated with

a seed file containing the addresses of all known root nameservers and is periodically

updated by system administrators from a reliable source.

2. The root nameserver will reply that it does not know the answer to the query but

the authoritative nameserver for the net domain might. Thus, the root nameserver

delegates responsibility to the subdomain net that is in a different administrative

zone.

3. The recursive DNS resolver forwards the query for www.pwebproject.net to one of

the authoritative nameservers for the net domain.

4. The authoritative nameserver for the net domain will reply that it does not know the

12

www.pwebproject.net
www.pwebproject.net
net
net
www.pwebproject.net
net
net

Figure 2.2: How a recursive DNS resolver would resolve the domain name www.

pwebproject.net

answer to the query but the authoritative nameserver for the pwebproject domain

might.

5. The recursive DNS resolver forwards the query for www.pwebproject.net to one of

the authoritative nameservers for the pwebproject.net domain.

6. The authoritative nameserver for the pwebproject.net domain will respond with the

answer to the query. Note that the responsibility for the www subdomain is not dele-

gated in this case. The www.pwebproject.net domain is in the same administrative

zone as the pwebproject.net domain. Whether or not responsibility for a subdo-

main is delegated to another administrative zone is decided by the administrator of

the parent domain.

In reality the algorithm as presented above would overload the nameservers near the

root of the dns namespace. In order to reduce the load on these servers and improve

the look-up time for subsequent requests, caching is employed at each stage in the name

resolution process.

13

www.pwebproject.net
www.pwebproject.net
pwebproject
www.pwebproject.net
pwebproject.net
pwebproject.net
www
www.pwebproject.net
pwebproject.net

The delegation of responsibility from one administrative zone to another is achieved

by an authoritative nameserver in the parent domain returning a nameserver record (NS)

containing the addresses of authoritative nameservers in the subdomain.

2.2 pWeb Device Naming Integration with Existing

DNS Infrastructure

The pWeb DNS Gateway supports deployment in two main configurations. It can be

deployed using a gateway domain or using a pseudo-TLD. Both deployment configura-

tions are described below. In each case, a DNS domain name is appended to the pWeb

device name before the domain name system is used to resolve the device name to a

network address. For example, when a gateway domain is used, the gateway domain

is appended to the device name. Suppose and application needs to resolve the pWeb

device name mobile.alice.uw to its current IP address and is using gateway domain

dht.pwebproject.net. The gateway domain is appended to the device name, forming the

pseudo-domain name mobile.alice.uw.dht.pwebproject.net1. The application then

performs a standard DNS query for the pseudo-domain name in order to retrieve the de-

vice’s current IP address.

Alternatively, the application could be configured to use a pseudo-TLD such as dht

in order to resolve device names their current IP addresses. In this case, an application

proceeds in the same manner by appending the TLD to the device name and performs

a DNS query for the result. The difference is how the query is handled by the recursive

nameserver handling the application’s request. In either scenario, the query is eventually

forwarded to a pWeb DNS Gateway server.

The method an application uses to determine whether a gateway domain or pseudo-

TLD should be used for resolving pWeb device names is out of the scope of this report.

However, one approach that could be adopted by applications designed specifically for use

with pWeb is to perform a query using a pseudo-TLD, and if that fails, retry the query

using a well-known gateway domain.

1Here the domain name mobile.alice.uw.dht.pwebproject.net is referred to as a pseudo-domain

name because it is not a domain name as defined by the domain name system.

14

dht.pwebproject.net
mobile.alice.uw.dht.pwebproject.net
dht
mobile.alice.uw.dht.pwebproject.net

1 dht.pwebproject.net. IN NS dnsgw1.pwebproject.net.

2 IN NS dnsgw2.pwebproject.net.

3 dnsgw1.pwebproject.net. IN A 129.97.26.34

4 dnsgw2.pwebproject.net. IN A 129.97.26.35

Listing 2.1: Nameserver records for pwebproject.net nameservers

Integration Using a Gateway Domain

In order to set up a pWeb gateway domain, the parent of the gateway domain must be

configured to delegate queries for the domain to one or more DNS Gateway servers. This

is achieved by configuring NS records in the parent domain.

The domain dht.pwebproject.net is currently set up as a DNS gateway to the pWeb

naming system and is available for public use. It will will be used as an example in this

section to explain how a gateway domain works. The domain pwebproject has been reg-

istered as a subdomain of the net top level domain2. As part of the registration process,

NS records for the pwebproject subdomain were created in the net domain, delegating re-

sponsibility for queries to authoritative DNS servers in the pwebproject.net authoritative

zone.

Each of the authoritative nameservers for the pwebproject.net domain are in turn

configured with NS records that delegate responsibility for the dht.pwebproject.net

subdomain to DNS Gateway servers3. DNS resource records, such as NS records, have

a standard textual representation that is defined in [15]. The textual representation of the

NS records for the dht.pwebproject.net domain are shown in Figure 2.1. Lines 1-4 Fig-

ure 2.1 show that there are two authoritative nameservers for the dht.pwebproject.net

domain at the IP version 4 addresses 129.97.26.34 and 129.97.26.35, denoted by A records.

When a DNS query arrives at a DNS Gateway server, the gateway and one or more Home

Agents will find the device’s current IP address and the gateway will return the result as

a DNS reply. The procedure that the DNS Gateway and Home Agents use to process a

query is outlined below and depicted in Figure 2.3.

1. When the DNS Gateway receives a query, it checks that the domain being queried

2The registration of domain names under top level domains is out of the scope of this report, but many

resources explaining the registration process can be found on the web.

15

pwebproject.net
dht.pwebproject.net
pwebproject
net
pwebproject
net
pwebproject.net
pwebproject.net
dht.pwebproject.net
dht.pwebproject.net
dht.pwebproject.net

matches its configuration. If it does not match, the gateway returns an error. Next

the device name is extracted and a query for the device’s current IP address is

sent to a Home Agent in the pWeb network. The DNS Gateway to Home Agent

protocol is discussed in Section 2.4.1. The DNS Gateway must be configured with

the hostname of one or more Home Agents. The DNS Gateway configuration is

discussed in Section 2.4.2.

2. When the Home Agent receives the query, it extracts the device’s Home Agent iden-

tifier from the device name. It then retrieves the Home Agent’s IP address from its

cache or the DHT.

3. The Home Agent that received the query then contacts the device’s Home Agent and

asks for the device’s current IP address. The device’s current IP address is returned

to the DNS Gateway and it returns the current IP address to the requester using a

DNS reply. The current version of the DNS Gateway software does not cache the

results from Home Agents, but it does specify a configurable Time To Live (TTL)

value in the DNS reply sent back to the recursive DNS server. This TTL value

specifies the amount of time that the recursive DNS server should cache the result

obtained from the DNS Gateway.

Integration Using .dht Pseudo Top-Level Domain

Recall that in a typical scenario, stub resolvers on an end system such as a desktop or

laptop machine, offload most of the work of resolving domain names to a recursive DNS

server in the local network or in the Internet Service Provider’s network. The recursive

DNS server will then query the a root server and any other nameservers that it is referred

to in order to resolve the domain name to an IP address. In order to support a pseudo-

top level domain in the network serviced by the recursive resolver, and entry for the dht

pseudo-top level domain is permanently added to the recursive DNS server’s cache. This

entry contains NS records that delegate responsibility for the dht domain to pWeb DNS

Gateway servers that are also hosted in the local network.

3A subdomain of the pwebproject.net domain is used as the DNS Gateway domain rather that

pwebproject.net domain itself so that other subdomains, such as www.pwebproject.net can be crated

as well.

16

dht
dht
pwebproject.net
pwebproject.net
www.pwebproject.net

Figure 2.3: Procedure used by the DNS Gateway and Home Agents to resolve a device

name to IP address

17

When using a gateway domain, no non-standard configuration is required at any point

within the domain name system, and by default a DNS Gateway server set up using a

gateway domain will be globally accessible. By contrast, when using the pseudo-top level

domain, changes must be made to the nameservers in the network to be served and the

pseudo-top level domain will only be usable within that network. However, this approach

is less centralized than the gateway domain approach, provides more redundancy and is

more scalable.

Interception of a Gateway Domain in Local Network

For a well-known gateway domain, such as dht.pwebproject.net, the recursive DNS

nameservers for a network could be configured in order to “intercept” queries against

this domain and forward them to local pWeb DNS Gateways. This approach has the

advantage that applications designed for use with the pWeb system could be configured to

use a globally accessible DNS Gateway, but when the application is used within a network

supporting this type of interception, the query is forwarded to a local DNS Gateway server,

improving the response time and reducing the load on the globally accessible DNS Gateway

servers.

2.3 Scalability

The pWeb DNS Gateway has been designed to be extremely scalable. In its basic form,

the DNS Gateway translates messages between the DNS protocol and the Home Agent

protocol. No communication takes place between DNS Gateway servers and any number

can be deployed in parallel. Thus, the pWeb DNS Gateway is not an architectural bot-

tleneck in the pWeb device name resolution system. Additionally, the implementation of

the DNS Gateway software has been designed so that it can take full advantage of modern

server hardware. More details about the efficiency and scalability of the implementation

can be found in following section and Section 2.8.

18

dht.pwebproject.net

2.4 Design and Implementation

The pWeb DNS Gateway has been programmed from scratch with scalability and per-

formance in mind. The DNS Gateway exclusively uses asynchronous I/O for network

communication through the Boost Asio library [13] that is a cross platform C++ library

for network and low-level I/O programming and has been proposed for inclusion of the

next version of the official C++ standard [12]. The Asio library uses the most efficient

asynchronous I/O API offered by the operating system on each platform that it sup-

ports [22, 14]. For example, on Linux 2.6, the Asio library uses epoll as the socket event

notification mechanism.

Network servers have traditionally be programmed using a process-per-connection or a

thread-per-connection model. The overhead of these strategies limit the scalability of the

software on modern hardware [11, 22]. In this approach one process or one thread (or even

two threads in some cases) is created to service a single TCP connection. The creation

of processes or threads is a relatively expensive procedure that consumes both processor

time and memory. After the process or thread is created, the application issues a read or

write system call whenever it is ready to read or write data from the connection that blocks

until the operation completes, preventing the process or thread from doing any other useful

work. A large number of processes and threads causes the operating system to spend a

significant amount of time switching between them and scheduling times for them to run.

Most network servers that use a process-per-connection or thread-per-connection strategy

cannot handle more than ten thousand concurrent connections even on modern hardware.

This scalability limit is known as The C10K Problem [11]. Blocking operations on UDP

sockets cause similar scalability problems, although the effectf is much less severe.

The asynchronous I/O approach, however, has been designed and implemented to en-

sure that the software is not a bottleneck to scalability and can take full advantage of mod-

ern hardware with multicore processors and fast network connections. In the asynchronous

I/O approach, all network operations such as establishing a connection or performing a

read or write operation, are non-blocking or asynchronous. This decouples the threading

model from network operations, enabling the application designer to use as many or as few

threads as they see fit. The pWeb DNS Gateway uses one application thread by default,

but provides a configuration parameter to increase the number of threads, with an option

to match the number of application threads to hardware cores. Matching the number of

application threads to the number of hardware cores ensures that DNS Gateway can take

19

advantage of all available processing power if necessary on the host machine.

The DNS Gateway uses both TCP and UDP connections. The DNS protocol defaults to

UDP for simple queries in order to avoid paying the cost of establishing a TCP connection.

TCP connections are used when a query or reply is too large for a UDP datagram and for

more complex operations. The DNS Gateway to Home Agent protocol, discussed in the

next section, uses TCP exclusively.

The DNS Gateway has flexible configuration and logging subsystems that are discussed

in Section 2.4.2 and Section 2.4.3 respectfully. The DNS Gateway also has an instrumen-

tation subsystem that is discussed in Section 2.4.4. A discussion of known implementation

issues is discussed in Section 2.4.5.

2.4.1 DNS Gateway to Home Agent Protocol

The DNS Gateway to Home Agent protocol is a custom message-based application pro-

tocol over TCP. The DNS Gateway to Home Agent protocol uses two types of messages:

PeerInitiateGET messages are sent from the DNS Gateway to Home Agents in order to

request a device’s current IP address, and MessageGET REPLY messages are sent from

the Home Agent to DNS Gateway to answer device IP look-up requests. All messages are

sent over TCP connections. For every message sent, the sender opens a TCP connection,

writes the message to the socket and then closes the connection. The full specification of

the protocol is included in Appendix A. The format for the protocol was chosen in order

to simplify the connection handling code in the Home Agent software. Unfortunately, this

format is not very appropriate for the DNS Gateway to Home Agent protocol and suffers

from the following limitations.

• A new TCP connection must be established for each message sent and received.

This introduces connection establishment overhead and latency to the communication

protocol.

• Most of the fields in the messages exchanged are unused. This means that most of

the data exchanged over the network between the DNS Gateway and Home Agents

serves no useful purpose.

20

• Both the Home Agent and DNS Gateway must be able to accept incoming connec-

tions. This introduces administration overhead when the DNS Gateway is behind a

firewall because additional firewall ports must be opened.

• The DNS Gateway does not attempt to establish a connection to the Home Agent

until it has a query to send. This means that the DNS Gateway does not know in

advance if the Home Agent is inaccessible because it has crashed or is permanently

or temporarily offline.

A different protocol that does not suffer from these limitations was originally proposed

for use between the DNS Gateway and Home Agents. This protocol has been implemented

in the DNS Gateway but has not yet been adopted by the Home Agent software. The

specification for this protocol is included in Appendix B.

2.4.2 Configuration

The DNS Gateway software uses the Boost Program Options library [18] for runtime

configuration management. Most configuration options have long and short forms and

can be specified on the command line or in a configuration file. Short options specified

on the command line must be proceeded by a single dash, -, and long options must be

proceeded by a double-dash, --. Some options require an argument. An argument is

specified immediately after and separated from the option name by either a space or an

equals character, ‘=’, on the command line. In a configuration file, an equals sign must be

used. More information on the configuration file format is available in the Program Options

library documentation at the following link: http://www.boost.org/doc/libs/1_53_0/

doc/html/program_options/overview.html#idp120049152. When run with the option

--help, the DNS Gateway will print a summary of the available configuration options and

exit. This summary is shown in Listing 2.2. The --version, --help and --config options

may be specified only on the command line while all remaining options may be specified

on the command line or in a configuration file.

pWeb DNS Gateway v1.0.0

Allowed options:

Generic options:

21

http://www.boost.org/doc/libs/1_53_0/doc/html/program_options/overview.html#idp120049152
http://www.boost.org/doc/libs/1_53_0/doc/html/program_options/overview.html#idp120049152

-v [--version] [=arg(=1)] Print program version and exit

-h [--help] [=arg(=1)] Print summary of configuration options and exit

-c [--config] arg Path to configuration file

Configuration:

--ttl arg (=3600) Number of seconds DNS clients will be

instructed cache name to IP mappings

-t [--timeout] arg (=12) Maximum number of seconds to wait for

response from a Home Agent before

returning an error to the DNS client

-l [--log_file] arg (=dnsgw.log) Log file path

-L [--log_level] arg (=WARN) Log level

Only log messages with a level less

than or equal to the specified severity

will be logged. The log levels are NOTSET <

DEBUG < INFO < NOTICE < WARN < ERROR <

CRIT < ALERT < FATAL = EMERG

-i [--iface] arg IP v4 or v6 address of interface to listen

on for DNS queries

-p [--port] arg (=53) TCP and UDP port to listen on for DNS

queries

-H [--home_agent] arg List of Home Agent addresses to connect to

Any number of Home Agent addresses may

be specified, separated by commas. Each

address should have the form ’<hostname or

IP address>:<port>’. The DNS Gateway will

use all the Home Agent addresses specified

in a round-robin manner.

-N [--nshostname] arg The hostname of the DNS gateway

This hostname is included in DNS

replies and in messages sent to to Home

Agents. Home Agents will send replies to

this hostname using separate TCP

connections.

22

-P [--nsport] arg TCP port used to receive replies from Home

Agents

-s [--suffix] arg (=.dht.) Suffix to be removed from domain names in

order to obtain pWeb device names

--threads arg (=1) Number of application threads

Set to 0 to use one thread per

hardware core

--instsrv arg Address of instrumentation server

The address should have the form

’<hostname or IP address>:<port>’

Listing 2.2: DNS Gateway configuration options

There is one additional undocumented option that can be specified on the command

line or in a configuration file: the option --debug with short form -d enables debugging

mode. In debug mode all log messages are printed to the console as well as the log file.

2.4.3 Logging

The DNS Gateway uses log4cpp [7] as its logging subsystem. Log4cpp is a very efficient

and flexible logging library modelled after the popular log4j library. It can be easily

configured to log to multiple destinations using multiple formats. The DNS Gateway

currently supports logging to a file only, but support for other destinations, such a syslog

daemon, may be added in the near future.

2.4.4 Instrumentation

The DNS Gateway contains a custom instrumentation service. The DNS Gateway collects

information about every query it receives including the device name being queried, the time

the query was received, the amount of time taken to process the query with sub-millisecond

accuracy on most platforms, and a status code that identifies any errors encountered while

processing the request. In the current implementation, the instrumentation data is serial-

ized using the Boost Serialization library [19]. Instrumentation data is collected in a buffer

that uses a Nagle timer before being sent over UDP. Serialized instrumentation objects

23

are on the order of tens of bytes. The Nagle timer helps reduce the overhead of the UDP

protocol by packing as many instrumentation datagrams as possible into a single UDP

datagram during one Nagle period.

The purpose of the instrumentation library is to facilitate the real-time monitoring of

one or more DNS Gateways. Instrumentation data could be fed into a network opera-

tions centre’s monitoring system and used to produce real-time charts of the Gateway’s

performance and status indicators on a dashboard or heads-up display.

2.4.5 Known Issues

The current version of the DNS Gateway has a few known limitations. Each of these

limitations are relatively easy to correct and may be fixed in future versions of the DNS

Gateway.

• The device name to IP mappings retrieved from the Home Agents are not cached

in the DNS Gateway itself although the results will be cached by the DNS servers

querying the DNS Gateway.

• DNS queries contain a 16-bit serial number that is used to match queries and re-

sponses. The DNS Gateway copies the DNS query serial number to the PeetIniti-

ateGET message sent to a Home Agent and treats all serial and sequence numbers

globally. This has reliability and security implications. A more robust solution would

be to use a larger namespace for sequence numbers in PeetInitiateGET messages that

is formed by hashing the DNS client’s IP address and port with the DNS serial num-

ber.

• The DNS Gateway does not implement support for some standard DNS resource

record types such as NS and SOA records.

Standards Compliance

The DNS Gateway has been designed to be compliant with RFC 1035 [15]. This RFC

defines the DNS resource record formats and algorithms used by DNS servers in the domain

name system. This is still the canonical definition of the domain name system; however,

24

the system was designed to be extensible and many new features, such as extensions for

compression and encryption, are now in widespread use but not currently implemented in

the DNS Gateway.

2.5 Installing the DNS Gateway from Source

The DNS Gateway is written in portable C++ and makes use of several portable, high

quality C++ libraries. The following sections describe the DNS Gateway dependencies

and build procedures.

2.5.1 Dependencies

The DNS Gateway depends on the Boost and log4cpp libraries. The DNS Gateway distri-

bution also includes two additional tools for testing and debugging the gateway and it’s con-

figuration. One of these tools requires the cURL library. The libraries may be downloaded

and installed from their project websites4or from your platforms package management sys-

tem; however, the DNS Gateway requires Boost version 1.53 or newer, which is not available

in the official Ubuntu repositories for the current versions of Ubuntu. Boost 1.53 for Ubuntu

Precise Pangolin (12.04 LTS) and Quantal Quetzal (12.10) can be installed from this au-

thor’s PPA on Launchpad at https://launchpad.net/~apokluda/+archive/boost1.53.

The DNS Gateway also includes a few tools for testing and debugging the gateway.

2.5.2 Building

The DNS Gateway uses the CMake build system. Listing 2.3 shows the commands to

build and install the DNS Gateway from source on Unix-like platforms. The recommended

way to build and install the DNS Gateway on Windows platforms is to use the GMake

GUI. Instructions on how to use the CMake GUI are available on the CMake website at

http://www.cmake.org.

4The Boost libraries are available from http://www.boost.org/, the log4cpp libraries are available from

http://log4cpp.sourceforge.net/, and the cURL libraries are available from http://curl.haxx.se/

libcurl/.

25

https://launchpad.net/~apokluda/+archive/boost1.53
http://www.cmake.org
http://www.boost.org/
http://log4cpp.sourceforge.net/
http://curl.haxx.se/libcurl/
http://curl.haxx.se/libcurl/

alex@alex-desktop:~$ tar -xzf pWeb-1.0.0-Source.tar.gz

alex@alex-desktop:~$ cd pWeb-1.0.0-Source/

alex@alex-desktop:~/pWeb-1.0.0-Source$ cmake .

alex@alex-desktop:~/pWeb-1.0.0-Source$ make

alex@alex-desktop:~/pWeb-1.0.0-Source$ make install

Listing 2.3: Commands to build and install the DNS Gateway on Unix-like platforms

2.6 Installation as a System Service

The recommended way to run the DNS Gateway is as a system service. On Unix-like

platforms, the recommend way to configure the DNS Gateway to run as a system service

is to use the daemon utility. The daemon utility can be installed on Ubuntu platforms by

installing the system daemon package. Once the package is installed, you must configure

your system to start and stop the DNS Gateway daemon when the system boots and shuts

down. Ubuntu systems use Upstart for this purpose. Listing 2.4 shows an Upstart script

that can be used to run the DNS Gateway as a system service using the daemon utility on

Ubuntu. The script should be saved to /etc/init/dnsgw.conf.

description "pWeb DNS Gateway Server"

author "Alexander Pokluda <apokluda@uwaterloo.ca>"

start on runlevel [2345]

stop on runlevel [!2345]

exec daemon --user=daemon:daemon --name=dnsgw --respawn -- \

/usr/local/bin/dnsgw -c /etc/dnsgw.conf

Listing 2.4: Upstart script to run the DNS Gateway as a system service on Ubuntu

2.7 Test Tools

The DNS Gateway distribution contains two test tools that can be used to aid in devel-

opment and testing of the DNS Gateway. The program dnsgw test client is designed

26

to check the status of a set of home agents and/or register device names at a set of home

agents. The tool has been designed to be extremely scalable and uses the same design

principles as the DNS Gateway itself in order to support potentially tens of thousands of

Home Agents very efficiently.

The program dnsgw test ha is a mock home agent. This program includes a subset

of the Home Agent code. In particular, it uses the same connection handling and message

parsing and composing code as the Home Agents. The difference is that rather than query

the DHT and/or a remote Home Agent for a device’s current IP address it will return

either the IP address 6.6.6.6 or a Name Not Found error for each query. The default is to

respond to each query immediately, but the tool can also be configured to wait a specified

amount of time before sending a response in order to simulate the latency associated with

performing a look-up operation in the DHT followed by contacting a remote Home Agent.

2.8 Performance Evaluation

The dnsgw test ha test tool from the previous section has been used to estimate a lower

bound on the performance of the DNS Gateway using the ResPerf DNS performance mea-

surement tool5that is designed to estimate the latency and throughput of DNS servers.

The test was run with all three components–the DNS Gateway, measurement tool, and

mock home agent–on a quad-core desktop PC with 16 GiB of RAM. Queries for pWeb

device names were generated by the measurement tool and sent to the DNS Gateway. The

DNS Gateway in turn issued a query for the device’s current IP address to the mock Home

Agent. The mock Home Agent was configured to return the IP address 6.6.6.6 immediately.

The report produced by the ResPerf measurement tool is included in Appendix C.

.

As can be seen in the report, the performance of the DNS Gateway and mock Home

Agent starts to suffer at about 4 seconds into the test. This is because the mock Home

Agent is unable to keep up with the increasing rate of queries generated by the measurement

tool. When the DNS Gateway does not receive a response from the mock Home Agent

after a short period of time, it responds to the measurement tool’s query with an error

5The ResPerf DNS performance measurement tool is available from Nominum at http://www.nominum.

com/support/measurement-tools/.

27

http://www.nominum.com/support/measurement-tools/
http://www.nominum.com/support/measurement-tools/

message. The statistics section of the report shows that the DNS Gateway responded to

all queries issued by the measurement tool. The pWeb Home Agent uses a traditional

thread-per-connection design as discussed in Section 2.4 that limits its scalability. This

test shows the benefit of the asynchronous I/O approach used by the DNS Gateway and

that the DNS Gateway can achieve a throughput of at least 7,084 queries per second using

one application thread.

2.9 Summary

This chapter discussed the system and software architecture, design and implementation

of the pWeb DNS Gateway. The DNS Gateway is provides a bridge between the domain

name system infrastructure and pWeb device naming system and helps provide a seamless

integration between pWeb and traditionally hosted web content. It is and will continue to

be an important part of the pWeb infrastructure.

28

Chapter 3

Device Indexer Overview

The pWeb Device Indexer is still under active development but the implementation is

nearly complete. The crawler consists of crawler and manager applications that are being

programmed from scratch. The design and implementation of the crawler and manager

parallels that of the DNS Gateway and test tools. They use efficient and scalable asyn-

chronous I/O for network communication, the Boost Program Options library for runtime

configuration, the log4cpp library for logging and the cURL library for accessing HTTP

interfaces.

The architecture of the Device Indexer system is shown in Figure 3.1. The crawler

processes are responsible for pulling device metadata from the pWeb Home Agents using

their HTTP interface. Whenever a crawler discovers a new Home Agent, it informs the

manager which then assigns responsibility for monitoring this Home Agent to one of the

crawler processes. After discovering device metadata, the crawler processes feed the data

in to a cluster of Solr Enterprise Search servers1.

One or more web servers running the Django web framework provide a web front-end

that can be used by human users as well as other applications in order to search for devices

in the pWeb network based on the published metadata.

1Solr is an open source top level Apache project that is related to Hadoop, Lucene and Nutch. The

Solr homepage is located at http://lucene.apache.org/solr/.

29

http://lucene.apache.org/solr/

Figure 3.1: The pWeb Device Indexer architecture

30

Chapter 4

Conclusion

This report summarized the work done for the author’s CS854 Cloud Computing and Man-

agement Research and Implementation Project. This work is also being contributed to the

pWeb project, which is an effort to create a hybrid peer-to-peer and cloud-based platform

for building next-generation scalable web applications. An overview of the pWeb system

and its three tier architecture was provided. The architecture, design and implementation

of the DNS Gateway that allows the domain name system to be used as an interface to

the pWeb device naming system was discussed. The DNS Gateway allows traditional and

pWeb applications to use the domain name system as an interface to the pWeb device

naming system, providing a seamless integration between pWeb and traditional web ap-

plications. An analysis of the performance of the DNS Gateway software showed that it

can easily handle at least 7,000 queries per second using a single application thread. The

Device Indexer, another system that is being designed and implemented, was discussed

briefly. The Device Indexer creates a searchable database of information about devices in

the pWeb system.

31

Appendices

32

Appendix A

DNS Gateway to Home Agent

Protocol

The following pages contain the specification for the version of the DNS Gateway to

Home Agent protocol currently in use. The protocol was designed to simplify connec-

tion handling in the implementation of the Home Agent software but suffers from a num-

ber of limitations that are discussed in Section 2.4.1. The latest version of this docu-

ment is available at https://docs.google.com/document/d/1x58zjm0SeMgDkUsnl0X4H_

3bnzpv33nsJ1Vtzu11Egs/pub.

33

https://docs.google.com/document/d/1x58zjm0SeMgDkUsnl0X4H_3bnzpv33nsJ1Vtzu11Egs/pub
https://docs.google.com/document/d/1x58zjm0SeMgDkUsnl0X4H_3bnzpv33nsJ1Vtzu11Egs/pub

DNS Gateway to Home Agent ­ Alternative Protocol
Documented by Alexander Pokluda
Last Updated March 14, 2013

All messages are sent over TCP connections. For every message sent, the sender opens a
socket, writes the message to the socket, and then closes the connection.

The receiver listens for incoming connections. When a connection is established, the receiver
passively reads a message and then waits for the connection to be closed by the sender.

There are two types of messages: PeerInitiateGET, and MessageGET_REPLY. Each of these
two message types is preceded by an ABSMessage header.

Field Types
All integer values are transmitted in little­endian format. Integers may be signed (int) or unsigned
(uint). The width of each integer type is denoted in bits (eg, 8, 32).

Double values are transmitted in IEEE 754 Double­Precision Floating Point Format. Each double
is 8 octets long, transmitted in little­endian format.

Strings are transmitted as a 4 octet length field (int 32) followed by ‘length’ ASCII characters.
Strings are not null terminated.

Unused Fields
Many fields are unused and must consist entirely of zero bits.

ABSMessage
The following fields are sent in order. The use and/or value of each field is explained for
PeerInitiateGET (aka GET) and MessageGET_REPLY (aka REPLY) messages from the
perspective of the DNS Gateway. GET messages are sent from the DNS Gateway to the Home
Agent and REPLY messages are sent from the Home Agent to the DNS Gateway.

● Message Type (uint 8)
○ GET: The value of this field must be 5 for PeerInitiateGET
○ REPLY: The value of this field must be 43 for MessageGET_REPLY.

● Sequence Number (int 32)
○ GET: The DNS Gateway copies the DNS serial number received from DNS

clients to GET messages sent to the home agent. (A more robust approach could
be implemented if necessary by the DNS Gateway by hashing the DNS Client’s
serial number with connection specific information such as source/destination IP
addresses and port numbers.)

○ REPLY: Ignored.

● Destination Hostname (string)
○ GET: The hostname of the home agent that the DNS Gateway is sending the

request to.
○ REPLY: Ignored.

● Destination Port (int 32)
○ GET: The port of the home agent that the DNS Gateway is sending this message

to.
○ REPLY: Ignored.

● Source Hostname (string)
○ GET: The hostname of the DNS Gateway (replies from the home agent should be

sent back to this hostname).
○ REPLY: Ignored.

● Source Port (int 32)
○ GET: The port number that DNS Gateway is listening on for replies sent over a

separate TCP connection.
○ REPLY: Ignored

The following 7 fields are unused/ignored in both GET and REPLY and must be set to zero in
messages sent from the DNS Gateway to the Home Agent:

● Overlay Hops (uint 8)
○ GET: Unused
○ REPLY: Ignored

● Overlay TTL (uint 8)
○ GET: Unused
○ REPLY: Ignored

● IP Hops (int 32)
○ GET: Unused
○ REPLY: Ignored

● Latency (double)
○ GET: Unused
○ REPLY: Ignored

● Destination Overlay ID (int 32)
○ GET: Unused
○ REPLY: Ignored

● Destination Prefix Length (int 32)
○ GET: Unused
○ REPLY: Ignored

● Destination Max Length (int 32)
○ GET: Unused
○ REPLY: Ignored

● Source Overlay ID (int 32)
○ GET: Unused
○ REPLY: Ignored

● Source Prefix Length (int 32)
○ GET: Unused
○ REPLY: Ignored

● Source Max Length (int 32)
○ GET: Unused
○ REPLY: Ignored

PeerInitiateGET
Messages of this type are sent from a DNS Gateway to a pWeb Home Agent in order to request
that in resolve a device name to IP address. A PeerInitiateGET message consists of the
ABSMessage Header and the following fields:

● Device Name (string)
○ The name of the device that the home agent is being asked to find the IP address

for.

MessageGET_REPLY
Messages of this type are send from a Home Agent to a DNS Gateway in order to provide a
response to a PeerInitiateGET message. A MessageGET_REPLY message consists of the
ABSMessage Header and the following fields in order:

● Resolution Status (int 32)
○ Ignored

● Resolution Hops (int 32)
○ Ignored

● Resolution IP Hops (int 32)
○ Ignored

● Resolution Latency (double)
○ Ignored

● Origin Sequence Number (int 32)
○ Used as DNS sequence number

● Target Overlay ID (int 32)
○ Ignored

● Target Prefix Length (int 32)
○ Ignored

● Target Max Length (int 32)
○ Ignored

● Destination Hostname (string)
○ This field contains the IPv4 address for the device as a string in dotted­decimal

notation if the lookup was successful.
● Destination Port (int 32)

○ Ignored. This field presumably contains the number of a port that can be used to
access some sort of service on a device, but there is no standard mechanism in
the DNS protocol to return this information to the DNS client.

● Device Name (string)

○ Ignored.

Appendix B

Proposed DNS Gateway to Home

Agent Protocol

The following pages contain the specification for a proposed DNS Gateway to Home Agent

protocol. The latest version of this document is available at https://docs.google.com/

document/d/1I_n1iqBrHMFi3B6YKjLIg8wX-8VRuliO8j1WNA2r4tw/pub.

38

https://docs.google.com/document/d/1I_n1iqBrHMFi3B6YKjLIg8wX-8VRuliO8j1WNA2r4tw/pub
https://docs.google.com/document/d/1I_n1iqBrHMFi3B6YKjLIg8wX-8VRuliO8j1WNA2r4tw/pub

DNS Gateway to Home Agent Protocol Version 1.0
Specification by Alexander Pokluda
February 28, 2013

Overview
The pWeb DNS Gateway connects to one or more home agents using TCP connections. In this
document, the DNS Gateway may be referred to as the client and the Home Agent may be
referred to as the server.

Unless specified otherwise, all integer values are transmitted as unsigned integers in network
byte order (big endian). IP address values are also transmitted in network byte order.

This is a preliminary version of the protocol. It may evolve and change over time.

Connection Establishment
The DNS Gateway will be configured to connect to one or more home agents. When the DNS
Gateway starts up, it will attempt to establish a TCP connection with each home agent at the
hostname and port specified in its configuration. This TCP connection will be used for all name
lookup requests sent from the DNS Gateway to the Home Agent. If the the connection is closed
unexpectedly, the DNS Gateway will attempt to reestablish the connection.

Handshake
The handshake consists of the client sending a version number to the server as a two octet
integer. In this version of the protocol, the version number is 1.

After receiving the version number, the server should verify that it supports the version of the
protocol specified and then send the same version number back to the client. The connection is
now fully established and the client can begin sending queries to the server.

Messages
Each message starts with a two octet integer that identifies the type of the message (message
ID). Currently two message types are defined:

● QUERY = 1
○ A request to resolve a device name to an IP address sent from the client to the

server. This message is called QUERY.
● REPLY = 2

○ A response sent from the server containing a status code and optionally an IP
address. This message is called REPLY.

QUERY Message
A query message starts with a two octet serial number. The serial number is used to match
REPLY messages with QUERY messages. Reply messages can be sent in any order­­they do

not need to be sent in order that the QUERY messages were received. The client must ensure
that all unanswered queries have unique serial numbers.

After the serial number is a two octet integer specifying the length (in octets) of the device name
being queried, followed by the device name encoded in ASCII format.

REPLY Message
A reply message starts with the same two octet serial number sent with the corresponding
query. Next is one octet status code. Currently two status codes are defined:

● SUCCESS = 0
○ The device name was resolved to an IP address successfully and an IP address

follows the status code (see below).
● GENERAL FAILURE = 1

○ The Home Agent was unable to resolve the device name to an IP address.

A status code of 0 must be followed by an IP address. An IP address is sent as a one octet
version number (4 for IPv4 and 6 for IPv6) followed by either 4 octets for an IPv4 address or 16
octets for an IPv6 address.

Miscellaneous
When the connection between the DNS Gateway and Home Agent is terminated, all outstanding
queries/requests must be cancelled.

The server must respond to all queries within 30 seconds. If it is unable to resolve a name within
30 seconds, then it must send a reply indicating failure.

Examples
The following are examples of messages that could be sent from the client to the server and
server to client in a session. The response to the query with serial number 8547 may be sent
before the response to the query with serial number 24513.

All integers represented in base 10.
One box (marked with "+­­­+") indicates one octet.

CLIENT ­> SERVER

 Msg ID Ser # Len Device Name
+­­­+
| 1 | 24513 | 14 | n e x u s . a l i c e . u w |
+­­­+

 Msg ID Ser # Len Device Name
+­­­+
| 1 | 8547 | 16 | l a p t o p . s h i h a b . u w |
+­­­­+­­+

SERVER ­> CLIENT

 Msg ID Ser # Stts IPv IP Address
+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+
| 2 | 8547 | 0 | 4 | 2170661478 |
+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+­­­+

 Msg ID Ser # Stts
+­­­+­­­+­­­+­­­+­­­+
| 1 | 24513 | 1 |
+­­­+­­­+­­­+­­­+­­­+

Appendix C

Report Produced by ResPerf

The following pages contain a report produced the ResPerf DNS performance testing tool.

The test was run using the mock Home Agent, DNS Gateway and performance testing tool

on the same machine.

42

Resperf report 20130414­2054
Resperf output

DNS Resolution Performance Testing Tool
Nominum Version 2.0.0.0

[Status] Command line: resperf -P 20130414-2054.gnuplot -s 127.0.0.1 -p 5354 -d 1000000-dht
[Status] Sending
[Status] Reached 65536 outstanding queries
[Status] Waiting for more responses
[Status] Testing complete

Statistics:

 Queries sent: 94571
 Queries completed: 94571
 Queries lost: 0
 Run time (s): 100.000000
 Maximum throughput: 7084.000000 qps
 Lost at that point: 10.53%

Plots

References

[1] Reaz Ahmed, Faizul Bari, Raouf Boutaba, and Rakib Haque. Liverable-1.2: Archi-

tecture, design and implementation. Technical report, University of Waterloo, 2011.

Project Report for Orange Labs.

[2] Reaz Ahmed and Raouf Boutaba. pWeb: P2P web hosting.

[3] Reaz Ahmed and Raouf Boutaba. Plexus: A scalable peer-to-peer protocol enabling

efficient subset search. In IEEE/ACM Transactions on Networking, volume 17, pages

130–143. IEEE, 2009.

[4] R. Braden. Requirements for Internet Hosts - Application and Support. RFC 1123

(INTERNET STANDARD), October 1989. Updated by RFCs 1349, 2181, 5321, 5966.

[5] Ian Clarke, Oskar Sandberg, Brandon Wiley, and TheodoreW. Hong. Freenet: A

distributed anonymous information storage and retrieval system. In Hannes Federrath,

editor, Designing Privacy Enhancing Technologies, volume 2009 of Lecture Notes in

Computer Science, pages 46–66. Springer Berlin Heidelberg, 2001.

[6] R. Elz and R. Bush. Clarifications to the DNS Specification. RFC 2181 (Proposed

Standard), July 1997. Updated by RFCs 4035, 2535, 4343, 4033, 4034, 5452.

[7] Log for C++ Project. Log for c++ project. http://log4cpp.sourceforge.net/,

November 2011.

[8] XMPP Standards Foundation. Xmpp.

[9] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing con-

tent publication with coral. In Proceedings of the 1st conference on Symposium on

45

http://log4cpp.sourceforge.net/

Networked Systems Design and Implementation - Volume 1, NSDI’04, pages 18–18,

Berkeley, CA, USA, 2004. USENIX Association.

[10] Jabber. http://www.jabber.org/.

[11] Dan Kegel. The C10K problem. http://www.kegel.com/c10k.html, July 2011.

[12] Christopher Kohlhoff. Networking library proposal for tr2 (revision 1). Mail-

ing, JTC1/SC22/WG21 - The C++ Standards Comittee, March 2007. Doc No:

N2175=07-0035.

[13] Christopher Kohlhoff. Boost.asio - 1.53. http://www.boost.org/doc/libs/1_53_0/

doc/html/boost_asio.html, 2012.

[14] Christopher Kohlhoff. Boost.asio: Platform-specific implementation notes.

http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio/overview/

implementation.html, 2012.

[15] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035

(INTERNET STANDARD), November 1987. Updated by RFCs 1101, 1183, 1348,

1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033,

4034, 4035, 4343, 5936, 5966, 6604.

[16] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed Standard),

November 2010.

[17] C. Perkins, D. Johnson, and J. Arkko. Mobility Support in IPv6. RFC 6275 (Proposed

Standard), July 2011.

[18] Vladimir Prus. Boost.program options. http://www.boost.org/doc/libs/1_53_0/

doc/html/program_options.html, 2004.

[19] Robert Ramey. Boost.serialization. http://www.boost.org/doc/libs/1_53_0/

libs/serialization/doc/index.html, 2004.

[20] Credit Suisse. China smpartphone sector: Global handset forecast lifted by emerg-

ing market demand. https://plus.credit-suisse.com/r/TpQjQj, January 2013.

Credit Suisse Plus Article.

46

http://www.jabber.org/
http://www.kegel.com/c10k.html
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio/overview/implementation.html
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio/overview/implementation.html
http://www.boost.org/doc/libs/1_53_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_53_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_53_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_53_0/libs/serialization/doc/index.html
https://plus.credit-suisse.com/r/TpQjQj

[21] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the Domain

Name System (DNS UPDATE). RFC 2136 (Proposed Standard), April 1997. Updated

by RFCs 3007, 4035, 4033, 4034.

[22] Felix von Leitner. Scalable network programming or: The quest for a good web

server (that survives slashdot). http://bulk.fefe.de/scalable-networking.pdf,

October 2003.

[23] Erik Wilde and Cesare Pautasso. REST: From Resarch to Practice. Springer, 2011.

[24] Yi Wu, J. Tuononen, and M. Latvala. An analytical model for dns performance with

TTL value 0 in mobile internet. In TENCON 2006. 2006 IEEE Region 10 Conference,

pages 1–4, 2006.

[25] Yi Wu, J. Tuononen, and M. Latvala. Performance analysis of dns with TTL value 0 as

location repository in mobile internet. In Wireless Communications and Networking

Conference, 2007.WCNC 2007. IEEE, pages 3250–3255, 2007.

47

http://bulk.fefe.de/scalable-networking.pdf

	List of Figures
	List of Listings
	Introduction
	pWeb System Architecture
	Core Architecture
	Device Naming Services Overview
	DNS Gateway
	Device Indexer

	Related Work
	Proposed Milestones
	Basic Milestones
	Additional Milestones
	Extra Milestones

	DNS Gateway
	Domain Name System (DNS) Overview
	DNS Address Resolution Mechanism

	pWeb Device Naming Integration with Existing DNS Infrastructure
	Scalability
	Design and Implementation
	DNS Gateway to Home Agent Protocol
	Configuration
	Logging
	Instrumentation
	Known Issues

	Installing the DNS Gateway from Source
	Dependencies
	Building

	Installation as a System Service
	Test Tools
	Performance Evaluation
	Summary

	Device Indexer Overview
	Conclusion
	Appendices
	DNS Gateway to Home Agent Protocol
	Proposed DNS Gateway to Home Agent Protocol
	Report Produced by ResPerf
	References

